Heparan sulfate deficiency leads to Peters anomaly in mice by disturbing neural crest TGF-beta2 signaling.

نویسندگان

  • Keiichiro Iwao
  • Masaru Inatani
  • Yoshihiro Matsumoto
  • Minako Ogata-Iwao
  • Yuji Takihara
  • Fumitoshi Irie
  • Yu Yamaguchi
  • Satoshi Okinami
  • Hidenobu Tanihara
چکیده

During human embryogenesis, neural crest cells migrate to the anterior chamber of the eye and then differentiate into the inner layers of the cornea, the iridocorneal angle, and the anterior portion of the iris. When proper development does not occur, this causes iridocorneal angle dysgenesis and intraocular pressure (IOP) elevation, which ultimately results in developmental glaucoma. Here, we show that heparan sulfate (HS) deficiency in mouse neural crest cells causes anterior chamber dysgenesis, including corneal endothelium defects, corneal stroma hypoplasia, and iridocorneal angle dysgenesis. These dysfunctions are phenotypes of the human developmental glaucoma, Peters anomaly. In the neural crest cells of mice embryos, disruption of the gene encoding exostosin 1 (Ext1), which is an indispensable enzyme for HS synthesis, resulted in disturbed TGF-beta2 signaling. This led to reduced phosphorylation of Smad2 and downregulated expression of forkhead box C1 (Foxc1) and paired-like homeodomain transcription factor 2 (Pitx2), transcription factors that have been identified as the causative genes for developmental glaucoma. Furthermore, impaired interactions between HS and TGF-beta2 induced developmental glaucoma, which was manifested as an IOP elevation caused by iridocorneal angle dysgenesis. These findings suggest that HS is necessary for neural crest cells to form the anterior chamber via TGF-beta2 signaling. Disturbances of HS synthesis might therefore contribute to the pathology of developmental glaucoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling

Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing ...

متن کامل

Cell autonomous requirement for TGF-β signaling during odontoblast differentiation and dentin matrix formation

TGF-beta subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-beta signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-beta signaling contributes to the terminal differentiation of odontoblast and dentin formation during to...

متن کامل

A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo

INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin-heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest...

متن کامل

Dev107656 2057..2063

In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentration gradient that regulates early somite patterning and myotome organization. Here we demonstrate in the chicken embryo that WNT protein is not secreted to act at a distance, but rather loaded onto migrating neural crest cells that deliver it to somites. Inhibiting neural crest migration or ablating...

متن کامل

TGF-beta mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue-tissue interactions during tongue morphogenesis.

Skeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell-cell interactions affect cell fate determination and the organization of skele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 119 7  شماره 

صفحات  -

تاریخ انتشار 2009